
October 1988 Report No. STAN-CS-88-1232

PB96-148259

Temporal Logic Programming is Complete and Expressive

by

Marianne Baudinet

Department of Computer Science

Stanford University
Stanford, California 94305

19970609 035
prm QIFUUT? mzFZ\wm %

DARPA INSERT SHEET
.ASS = CA: ON 0s "•• S 'AGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION
unclassified

2* SECURITY CLASSIFICATION AUTHORITY

20 («CLASSIFICATION/DOWNGRADING SCHEOULE

4 PERFORMING ORGANIZATION REPORT NUM8ER(S)

STAN-CS-88-1232

1b. RESTRICTIVE MARKINGS

form Approved
OMB No 0704-0188
Sxp.Oata Jun 30. 1988

3 DISTRIBUTION/AVAILABILITY Of REPORT
Approved for public release:
Distribution Unlimited.

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6« NAME OF PERFORMING ORGANIZATION

Computer Science Department

6b OFFICE SYMBOL
(If applicabla)

7«. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (Cry. St it«, and ZIP Cod*)

Stanford University
Stanford, CA 94305

7b. AD0RESS(Ory. Stata, and ZIP Coda)

&*. NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA

8b OFFICE SYMBOL
(If applicabla)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

St. A00RESS(Oty, Staff. »ndZIPCoda)

1400 Wilson Blvd.
Arlington, VA 22209

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

n TITLE (Includa Sacunty Classification)
Temporal Logic Programming is Complete and Expressive

12 PERSONAL AUTHOR(S)
Marianne Baudinet

13* TYPE OF REPORT 13b TIME COVERED
FROM TO

14. DATE Of REPORT (Yaar. Month, Day)
October 1988

1$. PAGE COUNT
14

'6 SUPPLEMENTARY NOTATION

COSATi COOES

FiELO GROUP SUB-GROUP

18 SUBJECT TERMS (ContimM on ravarsa it nacassary and idantify by block numbar)

19 ABSTRACT {Convnua on raoarsa if nacatury and idantify by block numbar)

This paper address« semantic and expressiveness is-
sues for temporal logic programming and in partic-
ular for the TEMPLOQ language proposed by Abadi
and Manna. Two equivalent formulations of TEM-
PLOG's declarative semantics are given: in terms of a
minimal Herbrand model and in terms of a least fix-
point. By relating these semantics to TEMPLOQ's op-
erational semantics, we prove the completeness of the
resolution proof system underlying TEMPLOQ's exe-
cution mechanism. To study TEMPLOQ's expressive-
ness, we consider its propositional version. We show
how propositional TEMPLOQ programs can be trans-
lated into a temporal fixpoint calculus and prove that
they can express essentially all regular properties of
sequences.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED D SAME AS RPT □ QTlC USERS

:2a NAME OF RESPONSIBLE INOlVlOUAL

21. ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (Includa Araa Coda) 22c OFFICE SYMBOL

00 FORM 1473,84 MAR 83 APR tdition may bt uttd until »ihaurtad.

All othtr tdition» art obtolttt.
SECURITY CLASSIFICATION OF THIS PAGS

m® WMMt m£p?&i:&*» *

Temporal Logic Programming is Complete and Expressive"

Maxianne Baudinet
Computer Science Department

Stanford University

October 1988

Abstract

This paper addresses semantic and expressiveness is-
sues for temporal logic programming and in partic-
ular for the TEMPLOG language proposed by Abadi
and Manna. Two equivalent formulations of TEM-

PLOG's declarative semantics are given: in terms of a
minimal Herbrand model and in terms of a least fix-
point. By relating these semantics to TEMPLOG's op-
erational semantics, we prove the completeness of the
resolution proof system underlying TEMPLOG's exe-
cution mechanism. To study TEMPLOG's expressive-
ness, we consider its propositional version. We show
how propositional TEMPLOG programs can be trans-
lated into a temporal fixpoint calculus and prove that
they can express essentially all regular properties of
sequences.

1 Introduction

Temporal logic is more and more widely acknowl-
edged as a useful formalism for program specification
and verification. It has been used quite extensively
for concurrent programs and digital hardware, but it
is also applicable whenever it is necessary to specify
or describe a sequence of states or events, such as in

'This research was supported by the National Science Foun-
dation under Grants DCR-84-13230, DCR-86-11272 and CCR-
87-14170, by the Defense Advanced Research Projects Agency
under Contract N00039-84-C-0211, and by the United States
Air Force Office of Scientific Research under Contract AFOSR-
87-0149.

To appear in the Proceedings of the Sixteenth
ACM Symposium on Principles of Programming Lan-
guages, Austin, Texas, January 1989.

robot planning or historical databases. Recently, the
idea has emerged that one could more easily use the
expressive power of temporal logic if it could be made
directly executable, for instance as is done with first-
order logic in PROLOG. This has lead to the definition
of a number of programming languages based on tem-
poral logic ([FKTM086], [Mos86], [AM87], [Gab87],
[Wad88], [OW88a], [Sak]).

The earliest of these languages, the TEMPURA lan-
guage of [Mos84, Mos86] is based on a subset of inter-
val temporal logic whose formulas can be interpreted
as traditional imperative programs. In logical terms,
executing a TEMPURA formula (program) amounts to
building a model for that formula. The TOKIO lan-
guage of [FKTM086] is an extension of logic program-
ming, but resembles TEMPURA in the way it treats its
temporal constructs. The other temporal program-
ming languages ([Aba87], [AM87], [Gab86, Gab87],
[Wad85, Wad88], [OW88a], [Sak]) are based on the
logic programming paradigm and view an execution
of a program as a refutation proof.

For this last class of languages, important semanti-
cal questions are left unanswered. First among these
is the relation between the operational and the log-
ical semantics of the languages. Indeed, in classi-
cal logic programming, the operational and the logi-
cal semantics coincide because of the completeness of
SLD-resolution ([Hil74], [Cla79], [AvE82]). Unfortu-
nately, first-order temporal logic is inherently incom-
plete ([Aba87]). So, one could very well expect that
the operational and the logical semantics of temporal
programming languages do not and even cannot coin-
cide. Another unanswered question is the expressive-
ness of these languages. Classical Horn-clause logic
programming, though in some respects weaker than
first-order logic, is able to express predicates that are
not first-order, e.g., the transitive closure of a relation
([CH85]). Similar issues appear in temporal logic pro-
gramming languages. For instance, what temporal
properties are they actually capable of expressing?

Can they go beyond the expressiveness of temporal
logic?

In this paper, we examine these questions for the
TEMPLOG language of [AM87]. We capture both the
declarative and the operational semantics of this lan-
guage and prove that they coincide, hence proving
that the fragment of temporal logic defined by TEM-
PLOG admits a complete proof system. Then, turn-
ing to the expressiveness issue, we relate the proposi-
tional version of TEMPLOG with the temporal fixpoint
calculus /iTL of [Var88]. We show that TEMPLOG cor-
responds to a fragment of pTL and we characterize
its expressiveness in terms of finite automata.

TEMPLOG extends classical Horn logic program-
ming to allow specific use of the temporal operators
O (next), O (always), and O (eventually). Programs
are sets of temporal clauses, and computations are
proofs by refutation. The proof method used is a res-
olution method for temporal logic to which we refer as
TSLD-resolution. We study the declarative (logical)
semantics of TEMPLOG and define it both in model-
theoretic terms and in fixpoint terms. For this, we de-
fine the notions of temporal Herbrand interpretation
and of temporally ground formulas. We prove that
the declarative semantics of a program is character-
ized by the minimal Herbrand model of the program.
We then show how to associate with a TEMPLOG pro-
gram a mapping whose least fixpoint coincides with
the minimal Herbrand model of the program. This
provides a fixpoint characterization of the declarative
semantics. Next, we examine the TSLD-resolution
method that is the basis of the operational semantics
of TEMPLOG. We establish a correspondence between
membership in the fixpoint of the mapping associated
with programs and existence of a temporally ground
resolution proof, thereby obtaining a type of ground-
completeness theorem. From this result, we establish
the completeness of TSLD-resolution using a tempo-
ral lifting lemma. Our proof techniques extend those
that have been used for giving semantics to classi-
cal logic programming ([vEK76], [Cla79], [AvE82],
[Llo84], [Apt87]).

The fixpoint semantics provides the necessary tool
for studying the expressiveness of the language. To
focus on the temporal expressiveness of the language,
we study its expressiveness in the propositional case.
Using our least fixpoint semantics it is quite easy to
show that the expressiveness of TEMPLOG queries cor-
responds to a fragment of /iTL allowing only least
fixpoints applied to positive formulas. We further
characterize the expressiveness of TEMPLOG and show
that it essentially corresponds to the finite-word regu-
lar languages (more precisely to the w-languages that
are obtained by extending finite-word regular lan-

guages), TEMPLOG can thus express some proper-
ties that are not expressible in pure temporal logic as
this last language cannot express all regular behaviors
([W0I83])1. On the other hand, there are formulas of
temporal logic that are not expressible in TEMPLOG
since expressing all of temporal logic in fiTL can re-
quire using greastest fixpoints or the alternation of a
greatest and a least fixpoint ([Par81]). In conclusion,
if one is only interested in queries that can be can be
checked on a finite prefix of the temporal sequence, as
most likely would be the case for historical databases,
the temporal expressiveness of TEMPLOG is perfectly
adequate.

2 The Temporal Language

The TEMPLOG language of [AM87] is based on a
clausal subset of first-order temporal logic with time
considered discrete, linear and extending infinitely in
the future but not in the past. First-order tempo-
ral logic extends the first-order predicate calculus by
allowing the application of temporal operators to for-
mulas. The operators of interest here are O (next),
Ü (always) and O (eventually). Constant and func-
tion symbols are assumed to have a time-independent
interpretation; they are said to be rigid. Predicate
symbols can have an interpretation that varies with
time, in which case they are said to be flexible. In
fact, we assume that all the predicate symbols are
flexible. (We discuss this assumption below.)

A formula of temporal logic is interpreted over a
structure that we call a temporal interpretation. A
temporal interpretation I = (£>, S, a, J) consists of
a domain D, a sequence of states (time instants)
E = «To, <Ti, a-2,.. ■ that is isomorphic to u, an assign-
ment a to variables, and an interpretation J. Since
the constant and function symbols are rigid, the in-
terpretation J assigns them a global meaning over
the domain D, as in classical logic. But to predi-
cate symbols, which are flexible, the interpretation
assigns a relation over D for every state <r,- in the
sequence S. If i is a natural number, I^ is the tem-
poral interpretation obtained from I by taking the
initial state to be <r,- and the sequence of states to be
o~i,o~i+i,o-i+2, — Given a language, that is, a collec-
tion of variables and of constant, function, and predi-
cate symbols, the meaning of the terms and formulas
of the language with respect to a temporal interpre-
tation I = (D,£, a, J) is given by a function Tj that
provides the meaning of the terms, and the satisfac-

1 Temporal logic is known to have the expressiveness of star-
free a>-regular behaviors ([Tho8l]) whereas the temporal fix-
point calculus corresponds to ai-regular behaviors ([BB86]).

tion relation |=i for the formulas. They are defined
inductively in the usual way. The function 7j uses
the assignment a to interpret the free variables and
the interpretation J to interpret the constant and the
function symbols. The most interesting cases of the
definition of the satisfaction relation }=j are given
below. Let p be an £ary predicate symbol and let
ti,.. .,tt be terms.

\=xP{h U)
\=xOF

\=xOF

iff Jlp][*o](Tx[h]t...,Tx[*A)
iff J=I(x) F
iff for every i in u: |=j(i) F
iff for some i in w: t=j(o F

The notions of model, satisfiability, validity and logi-
cal consequence (denoted Fi |= F2) are defined in the
usual way. Informally, we will say that F holds at
time i when |=x(o F.

The TEMPLOG language is the subset of first-order
temporal logic with the following syntax. Let A de-
note an atom and N denote a next-aiom, that is, an
atom preceded by a finite number of O's.

Body: B ::= e \ A \ Bi,B2 \ OB \ OB
where e denotes the empty body

Initial clause: IC : := N <- B \ QN*-B
Permanent clause: PC ::= 0(JV *- B)
Program clause: C ::= IC \ PC
Goal clause: G '.'.- *—B

Throughout this paper, we use the symbol A to de-
note an atom, N for a next-atom, B for a body
(empty or not), C for a clause, P for a program, and
G for a goal clause. If F is a formula, we use the ab-
breviation O* F to denote the formula consisting of
F preceded by i occurrences of O.

The free variables in program and goal clauses are
implicitly universally quantified. A TEMPLOG pro-
gram consists of a set of program clauses, that is,
a conjunction of program clauses. In a clause, the
consequent of the implication is called the head (the
antecedent is the body). In a body, the comma stands
for the conjunction operator (we use "," and "A" in-
terchangeably in the semantic development). A pro-
gram clause that has an empty body is a fact. An
empty body corresponds to "true". A goal clause can
be seen as an initial clause with an empty head, the
empty head corresponding to "false". Hence, a goal
of the form *— B with free variables Xi,..., Xn cor-
responds to the formula (VXi) • • • (VXn)->5, that is,
->(3Xi)---(3Xn)B (we use "♦- B" and «-.j?" inter-
changeably in the semantic development).

Example 2.1 The following simple program P de-
fines a predicate p such that p(X) is true at time z
for X = s2i(a). (We use capital letters for variables,

and (strings of) lower-case letters for constant, func-
tion and predicate symbols.)

p(a)<-
D(Op(s(s(X)))^p(X)) ■

Proof Method

Given aTEMPLOG program and a goal, a computation
consists in trying to derive a contradiction using tem-
poral resolution rules. When a refutation is obtained,
it is usually for a certain instantiation of the variables
in the goal, called an answer substitution. We assume
some familiarity with the notions of substitution and
unification (e.g. [Rob65], [LMM88], [MW89]). If 9
and <j> are substitutions, we denote their composition
by 9 o <j>, and we write 9 y <j> to mean that 9 is more
general than <j>, that is, there is a substitution A such
that 9o\ = 4>.

We refer to the refutation procedure underlying
TEMPLOG as TSLD-resolution (for Temporal iinear
resolution for Definite clauses2 with a Selection func-
tion) by analogy with the SLD-resolution procedure
for classical logic programming ([AvE82]). Every step
of a TSLD-derivation consists in resolving a candidate
next-atom from the current goal with the head of a
program clause, to produce a new goal. Before defin-
ing the notion of candidate next-atom precisely, we
have to make a comment about the bodies of clauses.
Syntactically distinct bodies may in fact be logically
equivalent. So we assume that we are always deal-
ing with the canonical form of the body, a body (or
a goal) being in canonical form if its occurrences of
O are pushed all the way inwards and if its next-
atoms are in the scope of the least possible number
of O's. Each body has a unique equivalent canon-
ical form (up to commutativity and associativity of
the conjunction). A next-atom in a goal is said to
be candidate if it is in the scope of at most one O
in the canonical form of the goal. There is at least
one candidate next-atom in any nonempty goal. At
every step of a derivation using the TSLD-resolution
method, the selection function or computation rule
selects from the current goal the candidate next-atom
to be resolved in the next resolution step. This next-
atom is referred to as the selected next-atom. The
resolution rules used in TSLD-derivations are given
in Table 1. For each rule, the selected candidate next-
atom is O' A, and 9 is the most-general unifier (mgu)
of A and A'. The resolvent is also referred to as the
derived goal.

Let P be a program, G a goal, and R a computation
rule. A TSLD-derivation for P U {G} via rule R is

2 A definite clause is a Horn clause with a nonempty head.

Cond. Goal Clause Resolvent (Derived Goal)
1 *-BuOlA,B2 O* A' «- B' <-(BltB',B3)e
2 i > j +-B1,0'A,B2 a O1 A1 <- B' ^{BuB\B2)e

3 i > j ^BltO'A,B2 U{Q> A' «- B') ^(BuO->B',B2)e
4 j>i +-BuO(B2>O

tA,B3),B4 O' A1 «- S' <-(B1,0>-B2,B',0>-B3,B4)8
5 j > i *-BuO(B2,O

xA,B3),B4 D O3 A' *- B' «- (Bu B', 0(0- B2, cy-fla), S4)0

6 i > j +-BuO{B2,0>A, B3),B4 ao3 A' +- B' *-(Bl,B',0(B2,B3),B4)6
7 j > i ^BltO(B2,0'A,B3),B4 D(0' A' «- B') - (fllf 0(0*-J?2, 5', cy-Bs), S4)0

8 i > j -51,0(52,0'i,B3),B4 n(cy A' 4- 5') «-(Bi.OfBa.O-'S'.jBs),^)*

Table 1: TSLD-Resolution Rules for TEMPLOG (0 = m^w(.4, A'))

characterized by a sequence of goals Go,Gi, ... where
Go = G; a sequence of candidate next-atoms No,
Ni, ... selected by R from Go, G\, ..., respectively;
a sequence of program clauses C\, C2, ■■■ where each
d has been renamed so that none of the variables ap-
pearing in it also appears in G,_i or in C\,..., G,_i;
and a sequence of substitutions 01(62, ..., such that
G,-+i is the goal obtained by applying one of the
TSLD-resolution rules to C,+i and Gj with selected
next-atom Ni and mgu 0i+1. A TSLD-refutation for
P U {G} via R is a finite TSLD-derivation whose last
goal is empty. (We assume implicitly that the initial
goal G is nonempty.) The R-computed answer substi-
tution associated with an n-step refutation of PU{G}
via R is the substitution obtained by restricting the
composition (#i o • ■ • o 0n) to the variables of G. An
answer substitution 6 for Pö{G} is said to be correct
if P (= (V*)50. The (nonempty) goal G is said to be
n-refutable (n > 1) if there is a TSLD-refutation of
P U {G} of length less than n via each computation
rule; it is refutable if it is n-refutable for some n. No-
tice that a goal is refutable not simply if it has one
TSLD-refutation, but if it has a TSLD-refutation via
every computation rule, which is stronger.

Remark: We have augmented the original defini-
tion of TEMPLOG given in [AM87] to allow function
symbols in terms. Also, we have assumed that all
the predicate symbols are flexible, unlike in [AM87]
where both rigid and flexible predicate symbols are
allowed. However, our assumption is not restrictive
as the time-independence of a (^-ary) predicate p can
easily and efficiently be expressed in TEMPLOG with
the clause Dp(Xi,... ,Xt) «- Op(Xlt.. .,Xt). The
proof method underlying the execution of programs
was given in [AM87] for a fixed computation rule that
consists in always selecting the leftmost candidate
next-atom as in PROLOG ([CM84]). Here, we study

the semantics of TEMPLOG for an arbitrary computa-
tion rule.

3 Declarative Semantics for
TEMPLOG

A TEMPLOG program is a set of statements in tem-
poral logic. Given such a program, a computation
consists in trying to derive information that follows
from the program. So the declarative meaning of a
logic program is characterized by the set of bodies
that are logical consequences of the program, that is,
the set of bodies that are true in every model of the
program. In a first stage, we give a characterization
of this denotation of programs in terms of minimal
Herbrand model. For this, we introduce the notion
of temporal Herbrand model and prove that if a pro-
gram has a temporal model then it has a temporal
Herbrand model. Then we show that the class of tem-
poral Herbrand models of a program is closed under
intersection. Combining these results, we prove that
the minimal Herbrand model, that is, the intersection
of the temporal Herbrand models of a program, sat-
isfies exactly the bodies that are logical consequences
of the program, and hence provides a characterization
of the denotation of a program. In a second stage, we
show how to associate with a TEMPLOG program P a
function Tp on the domain of the temporal Herbrand
interpretations for P. Intuitively, this mapping cor-
responds to one step of ground inference from P. We
prove that this mapping is continuous and that its
least fixpoint is exactly the minimal Herbrand model
of the program, thereby providing a fixpoint char-
acterization of the declarative meaning of TEMPLOG
programs.

3.1 Model-Theoretic Semantics

Let L be a language characterized by its collection
of variables and of constant, function and predicate
symbols. The Herbrand universe UL of L is the set of
variable-free (that is, ground) terms constructed from
the constant and the function symbols in L. This no-
tion coincides with the notion of Herbrand universe
in classical logic, which is quite natural since the con-
stant and function symbols are rigid. The temporal
Herbrand base BL of £ is the set of ground next-atoms
constructed from the predicate symbols of L and the
ground terms of the Herbrand universe UL • A tem-
poral Herbrand interpretation for a language L is a
temporal interpretation with the Herbrand universe
UL as domain mapping the ground terms to "them-
selves" in UL- A temporal Herbrand interpretation
for (the closed formulas of) a language L coincides
with a subset of the temporal Herbrand base BL ■ it
is the set of ground next-atoms that are true under
the interpretation (at the initial time). So a ground
next-atom N is satisfied by a temporal Herbrand in-
terpretation I, denoted \=i N, iff N £ I. Notice that
one could equivalently consider the Herbrand base BL

to be, as in classical logic, the set of ground atoms
of L. Then, a temporal Herbrand interpretation I
could be defined as an w-sequence of subsets of BL ,
or equivalently, a function I : w —► 1Bh that asso-
ciates with every natural number i the set of ground
atoms that are true at time i.

The satisfaction relation for ground TEMPLOG
clauses has a simple reformulation when one intro-
duces the notions of temporally ground formula and
of temporally ground instance. A formula is said to
be temporally ground (TG) if O is the only tem-
poral operator that appears in it. So atoms and
next-atoms as well as program clauses of the form
O' A <— O'1 Ai,..., 0,m Am, and goal clauses of the
form «— Ou A\,..., 0'm Am are temporally ground3.
A temporally ground instance (TGI) of a body B is
a temporally ground body obtained from B by re-
placing every occurrence of O by a finite number of
O's. Similarly, a temporally ground instance (TGI)
of a program clause C is obtained from C by replac-
ing each occurrence of O and each occurrence of O
by a finite number of O's. Using the definition of the
satisfaction relation, one can prove the following.

Proposition 3.1 Let X be a temporal interpretation
of a program or goal clause C (a body B, resp.). Then
X satisfies C (B, resp.) if and only ifX satisfies every
TGI ofC (some TGI ofB, resp.)

3Beware of the difference between ground and temporally
ground: ground means variable-free whereas temporally ground
means O-free and O-free.

PROOF: The proof is straightforward, once one has
noticed that f=x<o F if and only if (=z O* F. ■
Intuitively, the property holds because the temporal
operators other than O are of D-force in clauses and
of O-force in bodies.

A clause is said to be strictly ground (SG) if it is
both ground (variable-free) and temporally ground
(D-free and O-free). A strictly ground instance (SGI)
of a clause is an instance of the clause that is both
ground and temporally ground. It follows from
Proposition 3.1 that a temporal Herbrand interpre-
tation for a program P satisfies P if and only if it
satisfies every strictly ground instance of every clause
in P.

Proposition 3.2 Let S be a set O/TEMPLOG clauses.
If S has a temporal model, then S has a temporal
Herbrand model.

PROOF: Let L be the language of the clauses in S,
and let I be a temporal model of S. We associate
with X the temporal Herbrand interpretation

I={N€BL:\=xN).

Using Proposition 3.1, one can show that I is a model
of 5.1

Property 3.3 (Model Intersection) Let P be a
TEMPLOG program. The intersection of a collection
of temporal Herbrand models of P is a temporal Her-
brand model of P.

PROOF: Using Proposition 3.1. ■
Intuitively, the Model Intersection Property holds be-
cause the temporal operators other than O are all of
O-force in clauses. It would not hold for example if
the language allowed the use of clauses of the form
Op <-. Indeed, both 7t = {Op} and J2 = {03p} are
models of this clause, but their intersection is not.

Knowing that the intersection of the temporal Her-
brand models of a program P is also a model for
P, we can now establish that this smallest Herbrand
model, denoted Mp, provides a characterization of
the declarative semantics of P.

Theorem 3.4 Let P be a TEMPLOG program and B
a ground body: P \= B if and only if \=MP B.
PROOF: [=$>] Trivial (Mp is a model of P).
[<=] Let |=Mp B. By Prop. 3.1, there exists a TGI B*
of B such that \=Mp B*. Let B* be Ni A ... A Nm.
Then

\=MP N! A ... A Nm =>{Nu...,Nm}CMP

=> for every temporal Herbrand model M of P:
{Nu...,Nm}CM

=> for every temporal Herbrand model M of P:

|=Af B* •

It follows that for every temporal Herbrand model
M of P there is a TGI B* of B such that \=M B*.
By Proposition 3.1, we thus have \=M B for every
temporal Herbrand model M of P. So Pö{~>B} has
no temporal Herbrand model, and hence Pl){-iB} is
unsatisfiable (Proposition 3.2). Therefore P (= B. I

The following corollary specifies the contents of Mp
as a subset of the Herbrand base. It is simply a re-
striction of Theorem 3.4 to the case of bodies that are
single ground next-atoms.

Corollary 3.5 MP = {O* A G BL : P \= 0{A}.

3.2 Fixpoint Semantics

Let P be a TEMPLOG program with language L. We
associate with P a mapping Tp that intuitively rep-
resents one step of strictly ground inference from P
(we will prove it in the next section). The domain of
this mapping is the complete lattice (2

BL
 , C). Let I

be a temporal Herbrand interpretation of P, that is,
I G 2Bi. The mapping TP is defined by:

TP(I) = {N G BL : N «- Nu ..., Nm is a SGI of a
clause in P and {Ni,..., Nm} C /}.

For example, let 0(0-' A *— B) be a ground in-
stance of a permanent clause in P. For every k £ u,
if there is a TGI Nx A ... A Nm of B such that
{OkNu...,O

k Nm} C I, then 0'+k A G TP(I). No-
tice that this definition of TP is similar to the defi-
nition of the mapping associated with classical logic
programs, except that in classical logic one deals with
atoms and with ground instances of clauses where
in temporal logic we deal with next-atoms and with
strictly ground instances of clauses, respectively. As a
result of this resemblance, the properties of Tp given
below (continuity, Proposition 3.6, and Theorem 3.7)
admit proofs that are very similar to the proofs of
the analogous results for classical logic programming
([vEK76], [AvE82], [Llo84], [Apt87]). The mapping
Tp is continuous on (2

BL
,C), and so, by the fix-

point theorem its least fixpoint lfp(Tp) is given by
Tp t w = hb{TP\9) : i > 0} = IXQTV'W (e.g.
[Llo84])4. The next proposition provides a criterion
for a temporal Herbrand interpretation to be a model
of a program P as a condition on Tp.

Proposition 3.6 Let I be a temporal Herbrand in-
terpretation for P. Then |=/ P iffTP(I) C I.

PROOF: 1=/ P iff for every SGI N <- Nly...,Nm of
every clause in P: |=/ AT +- Ni,..., Nm (Prop. 3.1),

4 lub stands for least upper bound and gib stands for greatest
lower bound.

that is, N € / if {Nu ..., Nm} C 7. This condition
is equivalent to Tp(I) C i". ■

Using Proposition 3.6, we can prove the correspon-
dence between the least Herbrand model Mp and the
least fixpoint of Tp.

Theorem 3.7 MP = TP | w.

PROOF: The least Herbrand model Mp is the inter-
section of the temporal Herbrand models of P. So in
the complete lattice (2BL

 , C):

MP = glb{I € 2B* : (=7 P)
= glb{I G 2BL

 : TP{I) C /} (by Prop. 3.6).

In other words, Mp is the greatest lower bound of
the pre-fixpoints of Tp, which is lfp(Tp) by a version
of the fixpoint theorem (e.g. [Llo84]). And so Mp =
Tp f u since Tp is continuous. I

4 Soundness and Complete-
ness of TSLD-resolution

In this section, we establish the soundness and the
completeness of the TSLD-resolution proof method
underlying TEMPLOG's execution. The soundness
proof is straightforward. We first establish the cor-
rectness of each resolution rule.

Lemma 4.1 (Soundness of the Rules) Let <— B'
be the resolvent of the goal <— B and the TEMPLOG
program clause C with most general unifier 6. Then
C\=(B6^ B').

PROOF: The proof is carried out separately for each
of the eight TSLD-resolution rules of Table 1. I

Lemma 4.1 allows us to prove the following theorem
of which soundness is an immediate corollary.

Theorem 4.2 (Correctness of Computed An-
swer Substitution) Let P be a TEMPLOG program
and B a body. If P U {<- B] has a refutation with
computed answer substitution 0, then 0 is correct, that
is, P |= (V*)J30.

PROOF: By induction on the length of the refutation
of P U {<— B} and using Lemma 4.1. ■

Coronary 4.3 (Soundness) Let P be a TEMPLOG
program and G a goal. If P U {G} has a TSLD-
refutation then P U {G} is unsatisfiable.

In classical logic, the proof of the completeness of
resolution is based on two main lemmas: a lemma
stating the completeness of ground resolution and a
lifting lemma to 'lift" the ground-completeness re-
sult to the first-order completeness result ([Rob65],

[AvE82], [Llo84], [Apt87]). In the case of tempo-
ral logic, our strategy is somewhat similar. We first
establish the correspondence between membership
in the fixpoint of the mapping Tp and temporally
ground refutability (notion to be defined precisely
below), thereby obtaining a completeness result for
strictly ground formulas (Lemma 4.6). Then we in-
troduce a temporal lifting lemma (Lemma 4.8) that
allows us to "lift" this completeness result for both
ground and temporally ground formulas to a com-
pleteness result for ground formulas (Lemma 4.9).
Finally, combining this ground-completeness lemma
with a lifting lemma (Lemma 4.11) we obtain the
desired completeness theorem (Theorem 4.12). It is
via the Temporal Lifting Lemma that the notion of
temporal groundedness plays its crucial role. The
completeness theorem that we prove, that is, The-
orem 4.12, is a strong form of completeness. It states
that unsatisfiability of a program and goal implies
not simply existence of a refutation but rather exis-
tence of a refutation via each computation rule (that
is, refutability). At the end of this section, we prove
a version of the completeness theorem that takes the
computed answer substitutions into account.

Let us first introduce the notions of temporally
ground refutation and temporally ground refutabil-
ity. A temporally ground derivation/refutation (TG-
derivation/refutation) for a program P and a TG-goal
G is a TSLD-derivation/refutation for G that only
uses TGI of the clauses in P (and hence only uses
the first TSLD-resolution rule of Table 1). There is
no occurrence of O in the goals of a TG-refutation
and no occurrence of O or O in the clauses used in
a TG-refutation. Given a program P, a temporally
ground goal G is said to be n-TG-refutable (n > 1)
if there is a TG-refutation for P U {G} of length less
than n via every computation rule; G is TG-refutable
if it is n-TG-refutable for some n > 1. As a first
step of the completeness proof, we introduce a lifting
lemma for TG-refutations (Lemma 4.5) that will be
needed in the proof of the completeness theorem for
strictly ground refutations (Lemma 4.6). This lifting
lemma follows from the following lemma which estab-
lishes a correspondence between TG-refutations of a
temporally ground goal and an instance of this goal.

Lemma 4.4 Let P be a TEMPLOG program, G a tem-
porally ground goal, 9 a substitution, and n > 1. To
any TG-refutation ofPö {GO} with mgu 's 9\,..., 9n,
there corresponds a TG-refutation of P U {G} with
mgu's B\,...,9'n such that the atom selected at any
step of the TG-refutation ofPö{G9] is an instance
of the atom selected at the corresponding step of the
TG-refutation of P U {(-?} and the program clauses
used are the same in both TG-refutations. Moreover,

(9[o ■ ■ • o 9'n) >:(9o91o---o9n).

PROOF: By induction on n. The substitution 9 can be
assumed to not affect the variables occurring in the
program clauses without loss of generality. The key
to this proof is the fact that if the atom A9 selected
for the first step of the TG-refutation for P U {GO}
unifies with the atom A' in the head of a program
clause and 0\ = mgu(A6, A'), then A and A' also
unify. This follows from A99x = A'9i - A'99x, which
holds because 6 does not affect the variables in A'.
Moreover, if $[= mgu(A,A') then 9\ X (9o9i) (by
definition of an mgu). In the inductive case (n > 1),
one also has to show by a similar argument that the
derived goal obtained after the first resolution step for
P U {G9} is an instance of the derived goal obtained
after the corresponding step for P\J {G}. ■

Lemma 4.5 (Lifting for TG-Refutability) Let P
be a TEMPLOG program, G a temporally ground goal,
9 a substitution, and n > 1. If G9 is n-TG-refutable,
then G is n-TG-refutable.

PROOF: Immediate consequence of Lemma 4.4. I

Lemma 4.6 (Strictly Ground Completeness)
Let P be a TEMPLOG program and N a ground next-
atom. IfNeMp then Pl){<- N) is TG-refutable.

PROOF: Let N £ MP. Since MP = TP | w (The-
orem 3.7), there is a ib G w such that N € TP

k{$).
One proves by induction on k that if N € Tpk(Q) then
PU{<— N} is TG-refutable. The base case is immedi-
ate. In the inductive step, let N G Tp(7>fc-1(0)). So
there is a SGI (N' <— Ni,..., Nm) 9 of a clause in P
such that N'9 = N and {Ntf,..., Nm9} C 2>*-1(0).
By the induction hypothesis, each of P U {<— N\9},
..., PU{«- Nm0} is TG-refutable. Since the N{6 are
ground, their TG-refutations are independent from
one another, and they can be combined in any desired
way. So P U {<- (Nu ..., Nm)9} is TG-refutable.

The first step of a TG-refutation for P U {<- N}
uses N' *— Ni,...,Nm. The derived goal is a goal
of which <— (JVi,..., Nm)9 is an instance, and so, by
Lemma 4.5, it is TG-refutable. Therefore PU{<- N}
is TG-refutable. ■

The next step in the proof of the completeness
of TSLD-resolution is the "temporal lifting" of the
Strictly Ground Completeness Lemma (by the Tem-
poral Lifting Lemma). We first introduce Lemma 4.7
which establishes the correspondence between the
steps of a TG-derivation and those of a TSLD-
derivation. The Temporal Lifting Lemma follows im-
mediately from Lemma 4.7.

Lemma 4.7 Let G be a goal, and let G* be a tempo-
rally ground instance of G. Let N be the next-atom

selected from G by a given computation rule, and let
N* be the corresponding next-atom in G*. Let C be a
program clause, and let C* be a temporally ground in-
stance ofC. If there is a TG-resolution step between
C* and G* with selected next-atom N* that produces
the (temporally ground) derived goal G\, then there
is a TSLD-resolution step between C and G with se-
lected next-atom N that produces the derived goalGi,
and G\ is a temporally ground instance ofGi.

PROOF: The proof separates in cases. We have to
consider the cases where the next-atom N* corre-
sponds to a next-atom N that is in the scope of zero
or one O in G. For each of these two cases, we con-
sider the subcases where the program clause C* is
the TGI of a clause C that is initial with or without
□ in the head or permanent. In studying all these
cases, we exhaust the eight TSLD-resolution rules of
Table 1. I

Lemma 4.8 (Temporal Lifting) Let P be a TEM-
PLOG program and G a goal. If G has a temporally
ground instance G* such that P U {G*} is n-TG-
refutable for some n > 1, then PU{G] is refutable5.

PROOF: By induction on n and using Lemma 4.7. I

Lemma 4.9 (Ground Completeness) Let P be a
TEMPLOG program and B a ground body. If \=MP B
then PU{*- B} is refutable.

PROOF: Let |=Mp B. By Prop. 3.1, there is a TGI
NiA...ANm of B such that {Ni,..., Nm} C MP.
For this TGI of B, we have

{tfi,...,iVm}CMp
=*• Vi = 1,..., m: P U {*- JV,-} is TG-refutable

(by the Strictly Ground Completeness Lemma)
=*■ P U {*- Nu ..., Nm} is TG-refutable

since the Nt's are ground and their refutations are
temporally ground. Therefore, Pl){*— B} is refutable
(by the Temporal Lifting Lemma). ■

Next we introduce a lifting lemma to be used to-
gether with the Ground Completeness Lemma in the
proof of the Completeness Theorem. It is the analo-
gous for TSLD-refutability of the Lifting Lemma for
TG-refutability (Lemma 4.5). As for TG-refutability,
we introduce a preliminary lemma from which the
Lifting Lemma directly follows.

Lemma 4.10 Let P be a TEMPLOG program, G a
goal, 9 a substitution, and n > 1. To any TSLD-
refutation of P U {Go} with mgu's 9i,...,9n, there
corresponds a TSLD-refutation ofPll{G} with mgu's
9[,...,9'n such that the atom selected at any step of

5Remember that we defined refutability to mean existence
of a refutation via every computation rule.

the refutation ofPu{G&} is an instance of the atom
selected at the corresponding step of the refutation of
P U {G} and the program clauses used are the same
in both TSLD-refutations. Moreover, (9[o • • • o 9'n) >
(9o9lo---o9n).

PROOF: Similar to the proof of Lemma 4.4.1

Lemma 4.11 (Lifting) Let P be a TEMPLOG pro-
gram, G a goal, 9 a substitution, and n > 1. If G9 is
n-refutable, then G is n-refutable.

PROOF: Immediate consequence of Lemma 4.10. I

Theorem 4.12 (Completeness) Let P be a TEM-
PLOG program and G a goal. IfPö {G} is unsatisfi-
able, then P U {G} is refutable, that is, P U {G} has
a refutation via every computation rule.

PROOF: Let G be the goal *- B such that PU{<- B}
is unsatisfiable. For every temporal model 1 of P, we
have ^i -<B, and in particular ^Mp ->B. So there is
a ground instance B9 of B such that \=Mp B9, and
by the Ground Completeness Lemma P U {<— B9] is
refutable. Therefore P U {— B} is refutable (by the
Lifting Lemma). ■

Next, we extend this result to take the computed
answer substitutions into account. One cannot show
that any correct answer substitution can be computed
by a refutation. Instead, we prove Theorem 4.14
which states that for any correct answer substitu-
tion, one can compute via every computation rule
an answer substitution that is more general than the
correct answer substitution. For this, we first intro-
duce Lemma 4.13. The proofs of Lemmas 4.13 and
Theorem 4.14 do not use the Completeness Theorem
which could then also be derived as a corollary to
Theorem 4.14.

Lemma 4.13 Let P be a TEMPLOG program and B a
body. IfP\= (V*)£, then there is a TSLD-refutation
of P U {«— B} via every computation rule with the
empty substitution as computed answer substitution.

PROOF: Let 9 be a substitution that replaces the free
variables of B with arbitrary new constants. Then
P (= B9 where B9 is ground. So by the Ground Com-
pleteness Lemma, Pu{*- B9) has a TSLD-refutation
(with empty computed answer substitution) via ev-
ery computation rule. But the new constants can
be textually replaced by the original variables in the
refutations of PL) {*- B9} to produce refutations of
PU{<— B} with the empty substitution as computed
answer substitutions. I

Theorem 4.14 (Computability of Correct An-
swer Substitution) Let P be a TEMPLOG program,
G a goal, and 0 a correct answer substitution for

P U {G}. For any computation rule R, there is an
R-computed answer substitution O~R for PU{G} such
that CR^O.

PROOF: Let G be <— B. Since 6 is a correct answer
substitution for P U {<- B}, we have P \= (V*)J30.
So by Lemma 4.13, PU{<- B9] has a TSLD-
refutation with the empty answer substitution via ev-
ery computation rule, and the desired result follows
by Lemma 4.10. ■

5 A fragment of TEMPLOG: TLI

In this section, we examine a fragment of TEMPLOG
that we call TLl. In TLl, the body of a clause can-
not contain any occurrence of O and initial clauses
cannot have O in their head. So in TLl, a body is
a conjunction of next-atoms and a clause is either of
the form N <- B (initial) or of the form D(JV <- B)
(permanent). The proof method for TLl is based
on the TSLD-resolution rules (1) and (3) of Table 1.
There are several reasons that make TLl worth con-
sidering. First, it is one of the smallest extensions
of Horn logic programming with temporal operators;
it was introduced in [AM87] as a first step towards
temporal logic programming. As we will show in
the next section, it has theoretically the same ex-
pressiveness as TEMPLOG, although in practice TEM-
PLOG computations can be considerably more effi-
cient than their TLl counterparts. Moreover, TLl
is one of the few subsets of TEMPLOG that is closed
under the applicable TSLD-resolution rules; on the
contrary, any proper subset of TEMPLOG that allows
the use of O in the body of clauses is not closed un-
der the TSLD-resolution rules. Finally, TLl is equiv-
alent to the "pure" fragment of the THLP language6

introduced by Wadge in [Wad88] and also referred
to as CHRONOLOG in [OW88a]. However, the only
interpretation method suggested for THLP consists
in reducing the programs to classical Horn programs
with explicit time parameters and interpreting them
with classical logic programming methods. One of
the drawbacks of this approach is that the time pa-
rameter is treated as any other parameter by the logic
programming interpreter.

The declarative semantics of TLl can be given in
model-theoretic and in fixpoint terms like that of
TEMPLOG. One can also establish the completeness of
the TSLD-resolution method for TLl. This develop-
ment is omitted here as it is essentially superseded by
the semantic development for TEMPLOG. However, it
is interesting to note that the proofs can be com-
pletely carried out without introducing the notion

6THLP stands for Temporal Horn Lope Programming.

of temporal groundedness, and completeness can be
proved without the need for a temporal lifting lemma.

6 TEMPLOG'S Expressiveness

In this section, we consider exclusively the proposi-
tional subset of TEMPLOG, that is, the subset in which
all predicates are 0-ary. This will enable us to study
the purely temporal aspect of TEMPLOG's expressive-
ness. The fixpoint formulation of TEMPLOG's seman-
tics suggests a relation to temporal fixpoint calculi
([BB86], [Var88]). Indeed, propositional TEMPLOG
queries can be translated into a fragment of the /xTL
of [Var88], namely the positive fragment of /JTL that
allows only least fixpoint operators. We give the fla-
vor of the translation between TEMPLOG programs
and formulas of this fragment of /iTL on an example.

Example 6.1 The following two program clauses de-
fine a predicate u that holds whenever p holds an even
number of time instants later.

D(u <— p)

D(u *-OOu)

Notice that u can be seen as the result of applying
a temporal operator to p, and that this operator is
the dual of the even operator shown in [Wol83] to
be inexpressible in temporal logic. The least-fixpoint
semantics of the clauses for u can be expressed by
the /xTL formula (iX.(p V OOX). It is the least
fixpoint (with respect to propositional variable X) of
the disjunction of the bodies of the clauses defining u
(in which u is replaced by the variable X). I

This example shows that there are properties express-
ible in TEMPLOG which are not expressible in tempo-
ral logic. On the other hand, there are formulas of
temporal logic that are not expressible in TEMPLOG
since expressing all of temporal logic in /iTL can re-
quire using greatest fixpoints or the alternation of a
greatest and a least fixpoint ([Par81]). In terms of
languages, /iTL has the expressive power of w-regular
expressions whereas temporal logic has the expres-
siveness of star-free w-regular expressions ([Tho81]).
The expressiveness of TEMPLOG is clearly less than
that of w-regular languages. On the other hand, it
is incomparable to star-free w-regular languages. We
will prove that the expressiveness of TEMPLOG is es-
sentially that of finitely regular u-languages. An ui-
language L is finitely regular if there is a regular lan-
guage V such that each (infinite) word in L has a
finite prefix in V.

Let us first formally set up the framework for study-
ing the expressiveness of TEMPLOG in terms of u-
languages. For propositional TEMPLOG, a temporal

interpretation consists of a sequence of states isomor-
phic to u together with an interpretation function
giving, for each state, the (0-ary) predicates true in
that state. Such an interpretation can be seen as
an infinite word over the alphabet 2^, where V is
the set of predicates in the language. Notice that
there is no distinction between temporal interpreta-
tions and temporal Herbrand interpretations in the
propositional case. So we can characterize an inter-
pretation by the set of next-atoms that hold in it.
A finite prefix of an interpretation is a restriction of
the interpretation to a prefix of u>. Any finite set of
next-atoms is a finite prefix of an interpretation.

To give a meaningful characterization of the ex-
pressiveness of TEMPLOG, we consider sets P of pro-
gram clauses that define some predicates u\,..., um

in terms of themselves and in terms of other predi-
cates Pi,...,pn not defined in P. To emphasize the
fact that the predicates Pi,...,pn are not defined by
P, we denote the program by P(pi,... ,pn). Each of
the Ui defined by P corresponds to a temporal oper-
ator whose arguments are Pi,... ,pn.

Example 6.2 The following program P(p, q) defines
a predicate u that holds exactly when pllq holds, U
denoting the strong-uniil operator.

p,Ou)

The semantics of a program P(pi,... ,pn) must nat-
urally be a function of the semantics of pi,..., pn,
that is, of the interpretation of {pi,... ,pn}. Let us
view P(pi,..., pn) as the top layer of a two-layer pro-
gram whose bottom layer defines p1,..., pn. More
precisely, a program is said to be layered if it can
be partitioned into sets of clauses (layers) Pi,...,Pk

such that the definition of each predicate is com-
pletely contained within one layer and for every i
(1 < i < k), the predicate symbols appearing in the
body of the clauses in P{ are defined in a layer Pj
such that 1 < j < i. Two-layer programs are suffi-
cient for our purpose here. The fixpoint semantics of
a layered program can be reformulated in a way that
reflects its layering, somewhat like the iterated fix-
point semantics of the stratified programs of classical
logic ([Min88]).

Proposition 6.1 Consider a two-layer TEMPLOG

program P = Pi,P2 whose minimal Herbrand model
is Mp. Let Mi denote the minimal Herbrand model
of Pi. Let T2 be the mapping associated with P2

as defined in Section 3.2, and let T2 be defined by
mi) = IUT2(Z). Then MP = UM'M).

PROOF: The proof is quite straightforward. It in-
volves using the monotonicity and the continuity of
T2 (proved in Section 3.2). I

In our case, we consider programs P(pi,... ,pn)
whose bottom layer is arbitrary. So we define
the semantics of P in terms of interpretations of
{pi, ■■■,Pn}- Let Tp be the mapping associated
with the clauses in P as defined in Section 3.2,
and let T'P(I) = I U TP(I). Then the semantics of
P(pi,-- -,Pn) with respect to I, denoted Mp(I), is

given by Mp(7) = U~o^*'(/).
This sets up the framework for understanding how

programs characterize sets of words. The combina-
tion of a program P(pi,... ,p„), defining predicates
«i, • • •, «m, and a goal <— O* ut characterizes the col-
lection of interpretations I of {pi,... ,p„} (collection
of words on 2^Pl'-'P»}) such that O* ut holds in the
semantics of P considered with respect to J, that is,
such that \=MP{i) °* «/• Notice, however, that when
O' m holds in MP(I), there is a finite prefix I* of /
such that O' ui holds in MP(I*).

This last fact partially explains why the expressive-
ness of TEMPLOG programs can be characterized in
terms of finitely regular w-languages. To prove this
characterization, we will show how one can build a
finite-acceptance finite automaton on infinite words
from a TEMPLOG program and a goal, as well as
give the opposite construction. A finite-acceptance
automaton accepts an infinite word iff it accepts a
finite prefix of that word ([WVS83], [VW88]). Ex-
cept for the fact that it is applied to prefixes of in-
finite words, a finite acceptance automaton is iden-
tical to a classical finite automaton. Finite accep-
tance automata thus characterize the finitely regular
w-languages. However, we should note that without
further assumptions, the construction of a TEMPLOG
program from an automaton yields a program that
defines a superset of the set of interpretations char-
acterized by the automaton. The needed additional
assumptions will appear clearly once we have given
the proofs, and we will discuss them below.

Theorem 6.2 (From Programs to Automata)
Let P(pi,...,pn) be a TEMPLOG program defining
predicates ui,...,um. To this program P(pi,..., p„)
and any goal •<— O* ut with 1 <t <m, one can asso-
ciate a finite automaton A such that for every inter-
pretation I of {pi,... ,p„}, A accepts a finite prefix
of I if and only if \=Mp(l) °' «*•

PROOF: This theorem is proved by techniques similar
to those used in [Var88], [WVS83] and [VW88]. The
proof will be given in the full paper. I

Let us now consider the other direction, that is, the
construction of a TEMPLOG program corresponding to

10

a finite automaton. We first give the theorem and its
proof. Notice that in the statement of the theorem,
every sequence accepted by the automaton produces
a model of the program that satisfies the goal, but
the converse does not always hold. We will see how
the correspondence can be made exact after giving
the proof.

Theorem 6.3 (From Automata to Programs)
Let A be a finite automaton. There is a TEMPLOG
program P(pi, ■ ■ -,pn) defining a predicate v. such that
for every interpretation I o/{pi, ...,Pn}> if A finitely
accepts I then \=MP(I)

U
-

PROOF: Let A = (A,S,p,{s0},F), where A =
{ai,...,a„} is the alphabet, S = {so,si,...,Sfc} is
the set of states, p : S x A —► 2s is the transition
relation, so is the initial state, and F C S is the set
of final states. We encode the automaton's alphabet
with predicate symbols. So to each a,- corresponds a
predicate symbol pj (1 < j < n). We now construct a
TEMPLOG program P(pi,... ,pn) defining a predicate
u. The program will have to encode the transition
relation of the automaton. For this, we introduce
an auxiliary predicate Sj for each state s;- of the au-
tomaton (0 < j < k). The clauses of P(pi,...,pn)
are obtained as follows.

• For the initial state so, we introduce in P the
clause

D(u <- so)-

• For every alphabet symbol a;- € A and every
pair of automaton states s„,Su, € S such that
sw € p(sv,aj), we introduce in P the clause

0(sv *-pj,Osw).

• For every final state s„ € F, we introduce in P
the clause

Osv «- .

To prove that if A accepts I then ^AJ>(/)
u> we es-

tablish the following intermediate result.

Let i 6 w, j > 1, and s„ € S. IfAsv has
an accepting run of length at most j over
/(•'), then 0»'s„ G T^(I), where ASv is the
automaton that is identical to A except for
its initial state which is s„ instead of SQ.

This lemma is proved by induction on j . The cor-
rectness of the construction of P follows immediately
from the lemma (take s„ to be so). I

In the construction of a TEMPLOG program corre-
sponding to a finite automaton, we had to encode the

alphabet of the automaton with predicate symbols.
One problem with the encoding we have used is that
the predicate symbols are not mutually exclusive: the
fact that one of them holds at a certain time does not
prevent another one from holding at that same time.
Let us illustrate this with an example.

Example 6.3 Suppose that we try to encode in
TEMPLOG the automaton with alphabet {a, b, c] that
accepts the regular language (ab)*c. We associate
predicate symbols p, q, and r to a, 6 and c, respec-
tively. Then we construct the program as described
in the proof of Theorem 6.3, and obtain the following.

0(« <— r)

a(u<r-p,Oq,OOu)

Let us consider the goal *— u. The collec-
tion of interpretations / of {p, q, r} such that
NM/>(/)

U
 contains not only the interpreta-

tions that have a finite prefix h of the form
{p,Oq,0Jp,0'q,...,0 2Jt-2, v2fc-l s2k . •}, but
also all those that have a finite prefix containing h,
like for example the interpretation in which p and q
are true at every time instant and r is true at some
time instant. If we could instead encode the alphabet
symbols a, b, c respectively with (->p A -ig), (p A ->q),
and (->p A q), which are mutually exclusive formulas,
this problem would disappear. I

Thus what is missing to obtain an exact corre-
spondence between TEMPLOG and finitely regular u-
languages is the possibility of allowing the predicate
symbols pi,..., pn to occur negated in the body of the
clauses of a program P(pi,..., p„). This is necessary
for unambiguously representing the alphabet of an
automaton. Notice that we do not need to allow the
defined predicates ui,...,um to appear negated in
P, only the bottom-layer predicates. It is straightfor-
ward to adapt our proofs to show that, with this ex-
tension, the correspondence between the expressive-
ness of TEMPLOG and finitely regular w-languages is
exact.

One could imagine extending TEMPLOG further to
allow full stratified negation, that is, no predicate is
defined in terms of its own negation, but can be de-
fined in terms of the negation of the predicates de-
fined in a lower layer. In that case, the expressive-
ness of the extended language would be that of the
w-regular expressions. Indeed, such a use of negation
would make it possible to obtain the alternation of a
greatest and a least fixpoint sufficient to define all ir-
regular languages. This last result is essentially only
of theoretical interest, since the natural procedural
semantics of stratified programs based on the TSLD-

11

resolution method would not constitute a complete
proof system for this extended language.

Interestingly, stratified programs were first intro-
duced by Chandra and Harel in a paper in which they
study the expressiveness of DATALOG queries, that is,
queries of Horn logic programming without function
symbols, and compare it with fixpoint logic on finite
structures ([CH85]). In this paper, they first show
that DATALOG queries are equivalent to a fragment of
fixpoint logic, namely, the one in which formulas con-
sist of a least-fixpoint operator applied to a positive
existential formula. It was hoped that extending DAT-

ALOG with stratified negation would extend the ex-
pressiveness of the queries to that of the full fixpoint
logic on finite structures. However, Kolaitis proved in
[K0I88] that stratified programs have a strictly weaker
expressive power than fixpoint logic on finite struc-
tures. So the similarity does not carry over: although
adding stratified negation to TEMPLOG yields the ex-
pressiveness of the temporal fixpoint calculus, adding
stratified negation to DATALOG does not yield the full
expressiveness of fixpoint logic on finite structures.

7 Conclusion
Work

and Related

We have developed the declarative (logical) semantics
of TEMPLOG programs and expressed it in two equiv-
alent ways: as a minimal temporal Herbrand model
and as the least fixpoint of a mapping. We proved
a correspondence between the least fixpoint seman-
tics and the existence of refutations, hence proving
a completeness theorem for strictly ground formulas.
From this theorem and lifting lemmas, we established
the completeness of TSLD-resolution.

In classical logic, the proof of the completeness of
resolution relies on the Herbrand's theorem, which is
an immediate consequence of the compactness of first-
order logic ([Rob65], [Hil74], [Lov78]). Compactness
can be derived from the completeness of first-order
logic ([End72], [Lov78]). First-order temporal logic is
neither complete nor compact, so we could not rely
a priori on such results for TEMPLOG. However, we
were able to establish completeness for the subset of
temporal logic that constitutes TEMPLOG. So, it is
natural at this point to wonder whether results such
as compactness and Herbrand's theorem also hold for
this subset of temporal logic. To derive compactness,
we have to begin by extending the completeness the-
orem proved in this paper to the case of programs
that can have infinitely many clauses. This can be
done without difficulty. Then, compactness follows
from such a (stronger) completeness theorem, and a

Herbrand-like theorem can be stated.

Related work on the semantics of programming
in non-classical logics includes that of [OW88a] and
[OW88b] which was developed independently. There,
Orgun and Wadge study the declarative semantics of
"intensional" (modal) extensions of Horn clause pro-
grams. One such extension that they consider is the
THLP language we discussed in the previous section.
They give declarative semantics similar to ours, but
as they do not consider proof systems in conjunc-
tion with their language, they have no completeness
results. Also, as far as temporal programming, their
results are only given for a language equivalent to our
TLl. In the conclusions of [OW88a] and [OW88b], it
is mentioned that one of their results, namely the
minimal model semantics, also holds for full TEM-
PLOG.

In [Far86], Farinas del Cerro defines a framework,
called MOLOG, for programming in modal logics. This
framework is based on resolution proof methods for
such logics. In a recent paper ([BFH88]) Balbiani
et al. provide declarative and operational semantics
for one language in the MOLOG family and prove the
equivalence of these semantics.

Gabbay has proposed an extension of classical logic
programming distinct from TEMPLOG ([Gab87]). His
TEMPORAL PROLOG is based on a different subset
of temporal logic: D can only be applied to entire
clauses and the only operators allowed in the body
and in the head of clauses are O and the correspond-
ing operator for the past. A proof method is sketched
for this language, but it is unclear how it could be
used as the basis of an execution mechanism and of
operational semantics for the language. The only se-
mantics defined for this language is its logical seman-
tics.

For temporal languages like Moszkowski's TEM-
PURA ([Mos86]) and TOKIO ([FKTM086]), which view
executing a program as constructing a model for the
program; the semantic issues are completely differ-
ent. In fact, in the case of TEMPURA that impera-
tively executes a temporal logic formula, the states of
the computation are exactly the states of the model
of the formula, and the operational semantics of a
program corresponds to its logical semantics. TOKIO
extends PROLOG with temporal constructs that are
interpreted as control features. To give its formal se-
mantics one would need to combine a semantics of
temporal logic with a semantics of PROLOG that ex-
plicitly represents the execution mechanism. Such a
semantics could, for instance, be based on that of
[JM84], [DM88] or [Bau88b].

12

Acknowledgements

I wish to thank Martin Abadi, Rajeev Alur, Phokion
Kolaitis, Zohar Manna, Amir Pnueli, Carolyn Tal-
cott, Moshe Vardi and Pierre Wolper for related dis-
cussions and/or valuable comments on drafts of this
paper.

References

[Aba87] Martin Abadi. Temporal-Logic Theorem
Proving. PhD thesis, Computer Science
Department, Stanford University, Stan-
ford, CA, March 1987.

[AM87] Martm Abadi and Zohar Manna. Tem-
poral logic programming. In Interna-
tional Symposium on Logic Program-
ming, pages 4-16, San Francisco, CA,
September 1987. IEEE. An extended
version will appear in the Journal of
Symbolic Computation.

[Apt87] Krzysztof R. Apt. Introduction to logic
programming. Technical Report TR-
87-35, Department of Computer Sci-
ence, The University of Texas at Austin,
September 1987.

[AvE82] Krzysztof R. Apt and M.H. van Em-
den. Contributions to the theory of logic
programming. Journal of the ACM,
29(3):841-862, July 1982.

[Bau88a] Marianne Baudinet. On the semantics of
temporal logic programming. Technical
Report STAN-CS-88-1203, Computer
Science Department, Stanford Univer-
sity, Stanford, CA, May 1988.

[Bau88b] Marianne Baudinet. Proving termina-
tion properties of PROLOG programs: A
semantic approach. In Symposium on
Logic in Computer Science, pages 336-
347, Edinburgh, Scotland, July 1988.
IEEE.

[BB86] Behnam Banieqbal and Howard Bar-
ringer. A study of an extended tempo-
ral logic and a temporal fixed point cal-
culus. Technical Report UMCS86-10-2,
Department of Computer Science, Uni-
versity of Manchester, 1986.

[BFH88] Ph. Balbiani, L. Farinas del Cerro, and
A. Herzig. Declarative semantics for

[CH85]

[Cla79]

[CM84]

[DM88]

[End72]

[Far86]

modal logic programs. In International
Conference on Fifth Generation Com-
puter Systems 1988, Tokyo, Japan, De-
cember 1988. ■

Ashok K. Chandra and David Harel.
Horn clause queries and generalizations.
Journal of Logic Programming, 2(1):1-
15, 1985.

K.L. Clark. Predicate logic as a com-
putational formalism. Technical Report
79/59 TOC, Department of Computing
and Control, Imperial College, London,
December 1979.

W.F. Clocksin and C.S. Mellish. Pro-
gramming in Prolog. Springer-Verlag,
Berlin, second edition, 1984.

Saumya K. Debray and Prateek Mishra.
Denotational and operational semantics
for Prolog. Journal of Logic Program-
ming, 5(1):61-91, March 1988.

Herbert B. Enderton.
Introduction to Logic.
1972.

A Mathematical
Academic Press,

Luis Farinas del Cerro. Molog: A sys-
tem that extends Prolog with modal
logic. New Generation Computing, 4:35-
50, 1986.

[FKTM086] M. Fujita, S. Kono, H. Tanaka, and
T. Moto-oka. Tokio: Logic program-
ming language based on temporal logic
and its compilation to PROLOG. In Third
International Conference on Logic Pro-
gramming, pages 695-709, London, July
1986. LNCS 225, Springer-Verlag.

[Gab86] Dov Gabbay. Modal and temporal
logic programming. Technical Report
86/15, Department of Computing, Im-
perial College, London, June 1986.

[Gab87] Dov Gabbay. Modal and temporal logic
programming. In Antony Galton, edi-
tor, Temporal Logics and Their Appli-
cations, chapter 6, pages 197-237. Aca-
demic Press, London, 1987.

[Hil74] Robert Hill. LUSH-resolution and its
completeness. Technical Report 78, De-
partment of Artificial Intelligence, Uni-
versity of Edinburgh, Edinburgh, Scot-
land, 1974.

13

[JM84] Neil D. Jones and Alan Mycroft. Step-
wise development of operational and de-
notational semantics for Prolog. In In-
ternational Symposium on Logic Pro-
gramming, pages 281-288, Atlantic City,
NJ, February 1984. IEEE.

[K0I88] Phokion Kolaitis. The expressive power
of stratified logic programs. Manuscript,
Submitted for Publication, 1988.

[Llo84] J.W. Lloyd. Foundations of Logic
Programming. Springer-Verlag, Berlin,
1984.

[LMM88] J-L. Lassez, M.J. Maher, and K. Mar-
riot. Unification revisited. In Jack
Minker, editor, Foundations of Deduc-
tive Databases and Logic Programming,
chapter 15, pages 587-625. Morgan
Kaufmann, Los Altos, CA, 1988.

[Lov78] Donald W. Loveland. Automated The-
orem Proving: A Logical Basis. North-
Holland, Amsterdam, 1978.

[Min88] Jack Minker, editor. Foundations of De-
ductive Databases and Logic Program-
ming. Morgan Kaufmann, Los Altos,
CA, 1988.

[Mos84] Ben Moszkowski. Executing temporal
logic programs. Technical Report No.
55, Computer Laboratory, University of
Cambridge, Cambridge, England, 1984.

[Mos86] Ben Moszkowski. Executing Temporal
Logic Programs. Cambridge University
Press, Cambridge, England, 1986.

[MW89] Zohar Manna and Richard Waldinger.
The Logical Basis for Computer Pro-
gramming. Volume II: Deductive Sys-
tems. Addison-Wesley, 1989. Forthcom-
ing.

[OW88a] Mehmet A. Orgun and William W.
Wadge. Chronolog: A temporal logic
programming language and its formal
semantics. Unpublished Manuscript,
1988.

[OW88b] Mehmet A. Orgun and William W.
Wadge. A theoretical basis for inten-
sional logic programming. In Sympo-
sium on Lucid and Intensional Pro-
gramming, pages 33-49, Sidney, B.C.,
Canada, April 1988.

[Par81] David Park. Concurrency and au-
tomata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer
Science. LNCS 104, Springer-Verlag,
March 1981.

[Rob65] J.A. Robinson. A machine-oriented logic
based on the resolution principle. Jour-
nal of the ACM, 12(1):23-41, January
1965.

[Sak] Takashi Sakuragawa. Temporal Prolog.
To appear in RIMS Conference on Soft-
ware Science and Engineering. LNCS,
Springer-Verlag.

[Tho81] Wolfgang Thomas. A combinatorial ap-
proach to the theory of w-automata. In-
formation and Control, 48(3):261-283,
March 1981.

[Var88] Moshe Y. Vardi. A temporal fix-
point calculus. In Fifteenth ACM Sym-
posium on Principles of Programming
Languages, pages 250-259, San Diego,
CA, January 1988.

[vEK76] M.H. van Emden and R.A. Kowalski.
The semantics of predicate logic as a
programming language. Journal of the
ACM, 23(4):733-742, October 1976.

[VW88] Moshe Y. Vardi and Pierre Wolper.
Reasoning about infinite computation
paths. Manuscript, Submitted for Pub-
lication, 1988.

[Wad85] William W. Wadge. Tense logic pro-
gramming: a sane alternative. Unpub-
lished Manuscript, 1985.

[Wad88] William W. Wadge. Tense logic pro-
gramming: a respectable alternative.
In Symposium on Lucid and Inten-
sional Programming, pages 26-32, Sid-
ney, B.C., Canada, April 1988.

[Wol83] Pierre Wolper. Temporal logic can be
more expressive. Information and Con-
trol, 56(l-2):72-99, 1983.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and
A. Prasad Sistla. Reasoning about infi-
nite computation paths. In 24th Sympo-
sium on Foundations of Computer Sci-
ence, pages 185-194, Tucson, Arizona,
November 1983.

14

